Series: JSR/2

कोड नं. Code No. 30/2/2

| रोल नं.  |  |  |  |  |
|----------|--|--|--|--|
| Roll No. |  |  |  |  |

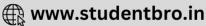
परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 11 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 31 प्रश्न हैं ।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाहन में 10.15 बजे किया जायेगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 11 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 31 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

## संकलित परीक्षा – II SUMMATIVE ASSESSMENT – II

## गणित


## **MATHEMATICS**

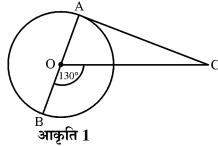
निर्धारित समय : 3 घण्टे अधिकतम अंक : 90 Time allowed : 3 hours Maximum Marks : 90

### सामान्य निर्देश:

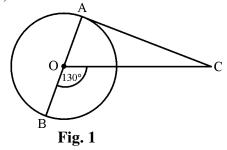
- (i) **सभी** प्रश्न अनिवार्य हैं।
- (ii) इस प्रश्न-पत्र में 31 प्रश्न हैं जो चार खण्डों अ, ब, स और द में विभाजित हैं।
- (iii) खण्ड **अ** में **एक-एक** अंक वाले **4** प्रश्न हैं । खण्ड **ब** में **6** प्रश्न हैं जिनमें से प्रत्येक **2** अंक का है । खण्ड — **स** में **10** प्रश्न **तीन-तीन** अंकों के हैं । खण्ड — **द** में **11** प्रश्न हैं जिनमें से प्रत्येक **4** अंक का है ।
- (iv) कैलकुलेटर का प्रयोग वर्जित है ।

30/2/2 1 [P.T.O.




#### **General Instructions:**

- (i) All questions are compulsory.
- (ii) The question paper consists of 31 questions divided into four Sections A, B, C and D.
- (iii) Section A contains 4 questions of 1 mark each. Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each and Section D contains 11 questions of 4 marks each.
- (iv) Use of calculators is not permitted.


## खण्ड – अ SECTION – A

प्रश्न संख्या 1 से 4 तक प्रत्येक प्रश्न 1 अंक का है। Question numbers 1 to 4 carry 1 mark each.

- 20 टिकट, जिन पर 1 से 20 तक संख्याएँ लिखी हैं, अच्छी प्रकार से मिलाई गई हैं फिर उनमें से एक टिकट यादृच्छया निकाली गई । प्रायिकता ज्ञात कीजिए कि निकाली गई टिकट पर 3 अथवा 7 के गुणज वाली संख्या है ।
  - 20 tickets, on which numbers 1 to 20 are written, are mixed thoroughly and then a ticket is drawn at random out of them. Find the probability that the number on the drawn ticket is a multiple of 3 or 7.
- 2. k के किस मान के लिए 2k + 1, 3k + 3 तथा 5k 1 एक समांतर श्रेढी के क्रमागत पद हैं ? For what value of k will the consecutive terms 2k + 1, 3k + 3 and 5k 1 form an A.P. ?
- 3. आकृति 1 में, O केन्द्र वाले वृत्त का AOB एक व्यास है तथा AC बिंदु A पर वृत्त की स्पर्शरेखा है । यदि  $\angle BOC = 130^\circ$  है, तो  $\angle ACO$  ज्ञात कीजिए ।



In Fig. 1, AOB is a diameter of a circle with centre O and AC is a tangent to the circle at A. If  $\angle BOC = 130^{\circ}$ , then find  $\angle ACO$ .





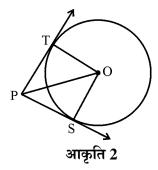
1.7 मी. लंबा एक दर्शक एक मीनार से  $20\sqrt{3}$  मी. की दूरी पर है । दर्शक की आँख से मीनार के शिखर का 4. उन्नयन कोण 30° है । मीनार की ऊँचाई ज्ञात कीजिए ।

An observer, 1.7 m tall, is  $20\sqrt{3}$  m away from a tower. The angle of elevation from the eye of observer to the top of tower is 30°. Find the height of tower.

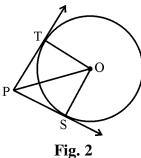
## खण्ड – ब SECTION - B

प्रश्न संख्या 5 से 10 तक प्रत्येक प्रश्न 2 अंक का है।

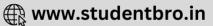
Question numbers 5 to 10 carry 2 marks each.


सिद्ध कीजिए कि बिंदु (2, -2), (-2, 1) तथा (5, 2) एक समकोण त्रिभुज के शीर्ष हैं । इस त्रिभुज का क्षेत्रफल 5. भी ज्ञात कीजिए ।

Prove that the points (2, -2), (-2, 1) and (5, 2) are the vertices of a right angled triangle. Also find the area of this triangle.


यदि एक समांतर श्रेढ़ी के प्रथम m तथा n पदों के योग में  $m^2:n^2$  का अनुपात है, तो दर्शाइए कि mवें तथा 6. nवें पदों में (2m-1): (2n-1) का अनुपात है ।

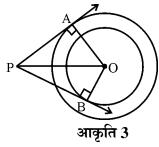
If the ratio of sum of the first m and n terms of an A.P. is m<sup>2</sup>: n<sup>2</sup>, show that the ratio of its  $m^{th}$  and  $n^{th}$  terms is (2m-1): (2n-1).


आकृति 2 में, एक बिंदु P से O केन्द्र वाले वृत्त पर दो स्पर्शरेखाएँ PT तथा PS इस प्रकार खींची गई हैं कि 7.  $\angle$ SPT = 120°। सिद्ध कीजिए कि OP = 2PS.



In Fig. 2, from a point P, two tangents PT and PS are drawn to a circle with centre O such that  $\angle SPT = 120^{\circ}$ , Prove that OP = 2PS.




30/2/2 [P.T.O.



8. वह अनुपात ज्ञात कीजिए जिसमें बिंदु (-3, k), बिंदुओं (-5, -4) तथा (-2, 3) को मिलाने वाले रेखाखंड को विभाजित करता है । k का मान भी ज्ञात कीजिए ।

Find the ratio in which the point (-3, k) divides the line-segment joining the points (-5, -4) and (-2, 3). Also find the value of k.

9. आकृति 3 में, 6 सेमी तथा 4 सेमी त्रिज्या के O केन्द्र वाले दो संकेन्द्रीय वृत्त हैं । AP बड़े वृत्त की स्पर्शरेखा है तथा BP छोटे वृत्त की स्पर्शरेखा है । यदि AP = 8 सेमी है, तो BP की लंबाई ज्ञात कीजिए ।



In fig. 3 are two concentric circles of radii 6 cm and 4 cm with centre O. If AP is a tangent to the larger circle and BP to the smaller circle and length of AP is 8 cm, find the length of BP.

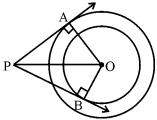


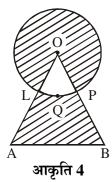

Fig. 3

10. 
$$x$$
 के लिए हल कीजिए :  $\sqrt{3}x^2 - 2\sqrt{2}x - 2\sqrt{3} = 0$   
Solve for  $x : \sqrt{3}x^2 - 2\sqrt{2}x - 2\sqrt{3} = 0$ .

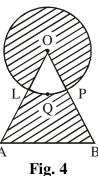
खण्ड – स

#### **SECTION - C**

प्रश्न संख्या 11 से 20 तक प्रत्येक प्रश्न 3 अंक का है ।


Question numbers 11 to 20 carry 3 marks each.

11. एक खेल में एक रुपये के सिक्के को तीन बार उछाला जाता है तथा प्रत्येक बार आने वाला पिरणाम नोट िकया जाता है । रमेश तब वह खेल जीतेगा यिद तीनों बार एक ही पिरणाम मिलें (अर्थात् सभी बार चित्त अथवा सभी बार पट) अन्यथा वह हार जायेगा । रमेश के खेल में हारने की प्रायिकता ज्ञात कीजिए ।


A game consist of tossing a one-rupee coin 3 times and noting the outcome each time. Ramesh will win the game if all the tosses show the same result, (i.e. either all three heads or all three tails) and loses the game otherwise. Find the probability that Ramesh will lose the game.



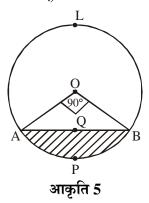
12. आकृति 4 में, एक समबाहु त्रिभुज OAB, जिसकी भुजा 12 सेमी है, के एक शीर्ष O को केन्द्र मानकर 6 सेमी त्रिज्या का एक वृत्त खींचा गया है । छायांकित भाग का क्षेत्रफल ज्ञात कीजिए । ( $\pi = 3.14$  तथा  $\sqrt{3} = 1.73$  लीजिए)



Find the area of shaded region in Fig. 4, where a circle of radius 6 cm has been drawn with vertex O of an equilateral triangle OAB of side 12 cm. (Use  $\pi = 3.14$  and  $\sqrt{3} = 1.73$ )



- 13. एक 3 मी. व्यास वाली अर्धगोलाकार टंकी, जो पानी से भरी है, को एक पाइप द्वारा  $3\frac{4}{7}$  लिटर प्रति. से. की दर से खाली किया जा रहा है । टंकी को आधा खाली करने में कितना समय लगेगा ?  $[\pi = \frac{22}{7}$  लीजिए]


  A hemispherical tank, of diameter 3 m, is full of water. It is being emptied by a pipe at the rate of  $3\frac{4}{7}$  litre per second. How much time will it take to make the tank half empty ?  $\left[\text{Use } \pi = \frac{22}{7}\right]$
- 14. धातु का ऊपर से खुला एक बर्तन शंकु के छिन्नक के आकार का है जिसकी ऊँचाई 21 सेमी है तथा निचले तथा ऊपरी वृत्तीय सिरों की त्रिज्याएँ क्रमश: 8 सेमी तथा 20 सेमी है । ₹ 35 प्रति लिटर की दर से इस बर्तन को पूरा भर सकने वाले दूध का मूल्य ज्ञात कीजिए ।  $\left[\pi = \frac{22}{7}\right]$  लीजिए

A metal container, open from the top, is in the shape of a frustum of a cone of height 21 cm with radii of its lower an upper circular ends as 8 cm and 20 cm respectively. Find the cost of milk which can completely fill the container at the rate of ₹ 35 per litre.  $\left[ \text{Use } \pi = \frac{22}{7} \right]$ 

30/2/2 5 [P.T.O.



15. आकृति 5 में, 10 सेमी त्रिज्या वाले वृत्त, जिसका केन्द्र O है, की AB एक ऐसी जीवा है जो केन्द्र पर 90° का कोण अंतरित करती है । लघु वृत्त खंड AQBP का क्षेत्रफल ज्ञात कीजिए । अत: दीर्घ वृत्तखंड ALBQA का क्षेत्रफल भी ज्ञात कीजिए । ( $\pi = 3.14$  लीजिए)



In fig. 5 is a chord AB of a circle, with centre O and radius 10 cm, that subtends a right angle at the centre of the circle. Find the area of the minor segment AQBP. Hence find the area of major segment ALBQA. (use  $\pi = 3.14$ )

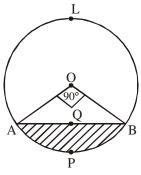



Fig. 5

16. 12 सेमी व्यास तथा 15 सेमी ऊँचाई वाला एक बेलनाकार टब आइसक्रीम से भरा है । पूरी आइसक्रीम को 10 बच्चों में ऐसे समान आइसक्रीम कोनों, जिनमें शंकु पर अर्धगोला आरोपित है, बाँटना है यदि शंक्वाकार भाग की ऊँचाई उसके आधार के व्यास की दुगुनी है, तो शंक्वाकार भाग का व्यास ज्ञात कीजिए ।

A cylindrical tub, whose diameter is 12 cm and height 15 cm is full of ice-cream. The whole ice-cream is to be divided into 10 children in equal ice-cream cones, with conical base surmounted by hemispherical top. If the height of conical portion is twice the diameter of base, find the diameter of conical part of ice-cream cone.

17. यदि एक बिंदु C(-1, 2), बिंदुओं A(2, 5) तथा B(x, y) को मिलाने वाले रेखाखंड को 3:4 के आंतरिक अनुपात में बाँटता है, तो  $x^2 + y^2$  का मान ज्ञात कीजिए ।

If the point C (-1, 2) divides internally the line-segment joining the points A (2, 5) and B(x, y) in the ratio 3:4, find the value of  $x^2 + y^2$ .



18. क्षैतिज पर खड़ी एक मीनार के शिखर पर एक 7 मी. लंबा ध्वजदण्ड लगा है । भूमि के एक बिंदु से ध्वजदण्ड के शिखर तथा पाद के उन्नयन कोण क्रमश:  $60^{\circ}$  तथा  $45^{\circ}$  हैं । मीनार की ऊँचाई दशमलव के एक स्थान तक ज्ञात कीजिए । ( $\sqrt{3} = 1.73$  लें)

A 7 m long flagstaff is fixed on the top of a tower standing on the horizontal plane. From a point on the ground, the angles of elevation of the top and bottom of the flagstaff are 60° and 45° respectively. Find the height of the tower correct to one place of decimal. (Use  $\sqrt{3} = 1.73$ )

19. एक समांतर श्रेढी का pवाँ, qवाँ तथा rवाँ पद क्रमश: a, b तथा c हैं, तो दर्शाइए कि a(q-r)+b(r-p)+c(p-q)=0.

The  $p^{th},\ q^{th}$  and  $r^{th}$  terms of an A.P. are a, b and c respectively. Show that a(q-r)+b(r-p)+c(p-q)=0

20.  $x \Rightarrow \text{ fint } \text{ fint } : \frac{1}{x} + \frac{2}{2x - 3} = \frac{1}{x - 2}, \quad x \neq 0, \frac{3}{2}, 2$ 

Solve for  $x: \frac{1}{x} + \frac{2}{2x - 3} = \frac{1}{x - 2}, \quad x \neq 0, \frac{3}{2}, 2.$ 

खण्ड 🗕 द

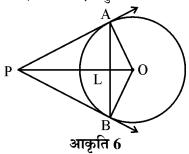
SECTION - D

प्रश्न संख्या 21 से 31 तक प्रत्येक प्रश्न 4 अंक का है ।

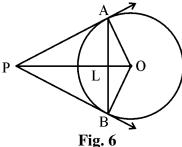
Question numbers 21 to 31 carry 4 marks each.

21. एक ऊर्ध्वाधर मीनार क्षैतिज पर खड़ी है तथा उस पर 5 मी ऊँचा ध्वजदण्ड लगा है । भूमि के किसी बिंदु से ध्वजदण्ड के शिखर तथा पाद के उन्नयन कोण  $60^{\circ}$  तथा  $30^{\circ}$  हैं । मीनार की ऊँचाई तथा बिन्दु और मीनार के बीच की दूरी ज्ञात कीजिए । ( $\sqrt{3} = 1.732$  लीजिए)

A vertical tower stands on a horizontal plane and is surmounted by a flagstaff of height 5 m. From a point on the ground the angles of elevation of the top and bottom of the flagstaff are 60° and 30° respectively. Find the height of the tower and the distance of the point from the tower. (take  $\sqrt{3} = 1.732$ )


22. 17 मी व्यास वाले एक वृत्ताकार पार्क की पिरसीमा के एक बिंदु पर एक खंभा इस प्रकार गाड़ना है कि पार्क के एक व्यास के दोनों अंतिबंदुओं पर बने फाटकों A और B से खंभे की दूरियों का अंतर 7 मी. है । ज्ञात कीजिए कि दोनों फाटकों से कितनी-कितनी दूरी पर खंभा गाड़ा जाए ।

A pole has to be erected at a point on the boundary of a circular park of diameter 17 m in such a way that the differences of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 metres. Find the distances from the two gates where the pole is to be erected.


30/2/2 7 [P.T.O.



आकृति 6 में, O केन्द्र वाले वृत्त की AB एक जीवा है जिसकी लंबाई 16 सेमी है जबिक वृत्त की त्रिज्या 10 सेमी है । A तथा B पर खींची गई स्पर्शरेखाएँ बिंदु P पर काटती हैं । PA की लंबाई ज्ञात कीजिए ।



In fig. 6, AB is a chord of a circle, with centre O, such that AB = 16 cm and radius of circle is 10 cm. Tangents at A and B intersect each other at P. Find the length of PA.



आकृति 7 में, एक डिस्क दिखाई गई है जिस पर एक खिलाड़ी दो बार तीर घुमाता है । माना पहली बार घुमाने पर तीर a संख्या वाले सैक्टर पर रुकता है तथा दूसरी बार घुमाने पर सैक्टर b पर रुकता है इस प्रकार एक भिन्न  $\frac{a}{b}$  बनती है । यदि प्रत्येक बार तीर घुमाने पर उसके सब खानों पर रुकने का संयोग बराबर है, तो प्रायिकता ज्ञात कीजिए भिन्न  $\frac{a}{h} > 1$  है ।



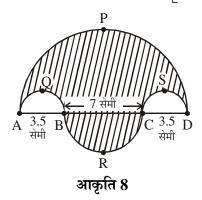

In fig. 7 is shown a disc on which a player spins an arrow twice. The fraction  $\frac{a}{h}$  is formed, where 'a' is the number of sector on which arrow stops on the first spin and 'b' is the number of the sector in which the arrow stops on second spin. On each spin, each sector has equal chance of selection by the arrow. Find the probability that the fraction  $\frac{a}{b} > 1$ .



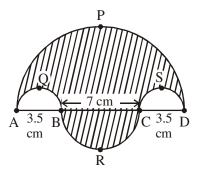
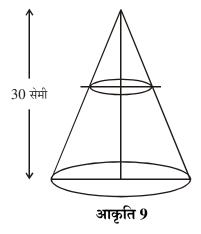
Fig. 7

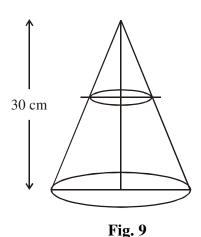


25. आकृति 8 में, रेखांकित भाग का क्षेत्रफल ज्ञात कीजिए जहाँ  $\widehat{APD}$ ,  $\widehat{AQB}$ ,  $\widehat{BRC}$  तथा  $\widehat{CSD}$  क्रमश: 14 सेमी, 3.5 सेमी, 7 सेमी तथा 3.5 सेमी व्यास के अर्धवृत्त हैं ।  $\left[\pi = \frac{22}{7}\right]$  लीजिए



Find the area of the shaded region in Fig. 8, where  $\widehat{APD}$ ,  $\widehat{AQB}$ ,  $\widehat{BRC}$  and  $\widehat{CSD}$  are semi-circles of diameter 14 cm, 3.5 cm, 7 cm and 3.5 cm respectively. [Use  $\pi = \frac{22}{7}$ ]



Fig. 8

26. आकृति 9 में, एक लंब वृत्तीय शंकु है जिसकी ऊँचाई 30 सेमी है आधार के समांतर एक तल द्वारा ऊपर से एक छोटा शंकु काट लिया जाता है । यदि काटे गए शंकु का आयतन मूल शंकु के आयतन का  $\frac{1}{27}$  भाग है, तो ज्ञात कीजिए कि आधार से कितनी ऊँचाई पर से छोटा शंकु काटा गया है ।



30/2/2 9 [P.T.O.

In fig. 9 is shown a right circular cone of height 30 cm. A small cone is cut off from the top by a plane parallel to the base. If the volume of the small cone is  $\frac{1}{27}$  of the volume of given cone, find at what height above the base is the section made.



27. रेशमा अगले वर्ष (12 मास बाद) अपनी लड़की को स्कूल भेजने के लिए न्यूनतम ₹ 6,500 एकत्रित करना चाहती है । वह पहले मास ₹ 450 तथा फिर प्रत्येक अगले मास पहले मास के ₹ 20 अधिक बचाती है । वह 12 मासों में कुल कितनी राशि बचा पायेगी ? क्या वह अगले वर्ष लड़की को स्कूल भेज पायेगी ?

इस प्रश्न से क्या मूल्य झलकता है ?

Reshma wanted to save at least  $\stackrel{?}{\underset{?}{?}}$  6,500 for sending her daughter to school next year (after 12 months). She saved  $\stackrel{?}{\underset{?}{?}}$  450 in the first month and raised her savings by  $\stackrel{?}{\underset{?}{?}}$  20 every next month. How much will she be able to save in next 12 months? Will she be able to send her daughter to the school next year?

What value is reflected in this question?

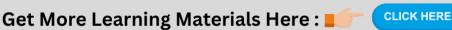
28. उस चतुर्भुज ABCD का क्षेत्रफल ज्ञात कीजिए जिसके शीर्षों के निर्देशांक A(1,2), B(6,2), C(5,3) तथा D(3,4) हैं ।

Find the area of the quadrilateral ABCD, the co-ordinates of whose vertices are A(1, 2), B(6, 2), C(5, 3) and D(3, 4).

29. यदि द्विघाती समीकरण  $x^2 + 2px + mn = 0$  के मूल वास्तिवक तथा समान हैं, तो दर्शाइए कि द्विघाती समीकरण  $x^2 - 2(m+n)x + (m^2 + n^2 + 2p^2) = 0$  के मूल भी समान हैं ।

If roots of the quadratic equation  $x^2 + 2px + mn = 0$  are real and equal, show that the roots of the quadratic equation  $x^2 - 2(m + n)x + (m^2 + n^2 + 2p^2) = 0$  are also equal.






30. एक त्रिभुज बनाइए जिसकी भुजाएँ 4 सेमी, 5 सेमी तथा 6 सेमी हैं । फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ दी गई त्रिभुज (पहली) की संगत भुजाओं का  $\frac{2}{3}$  हैं ।

Draw a triangle with sides 4 cm, 5 cm and 6 cm. Then construct another triangle whose sides are  $\frac{2}{3}$  of the corresponding sides of given (first) triangle.

31. सिद्ध कीजिए कि वृत्त के किसी बिंदु पर खींची गई स्पर्शरेखा स्पर्श बिंदु से होकर जाने वाली त्रिज्या पर लंब होती है।

Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.







## **QUESTION PAPER CODE 30/2/2**

## **EXPECTED ANSWER/VALUE POINTS**

#### **SECTION A**

1. 
$$n(s) = 20$$
, Multiples of 3 or 7 A: {3, 6, 9, 12, 15, 18, 7, 14} For  $n(A) = 8$  ....

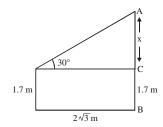
$$\frac{1}{2}$$

$$\therefore \quad \text{Reqd. Probability} = \frac{8}{20} \text{ or } \frac{2}{5}$$

$$\frac{1}{2}$$

**2.** 
$$2(3k + 3) = (2k + 1) + (5k - 1)$$

$$\frac{1}{2}$$


$$\Rightarrow$$
 k = 6

$$\frac{1}{2}$$

3. Getting 
$$\angle AOC = 50^{\circ}$$
, Getting  $\angle ACO = 40^{\circ}$ 

$$\frac{1}{2} + \frac{1}{2}$$

4.



$$\frac{x}{20\sqrt{3}} = \tan 30^{\circ} = \frac{1}{\sqrt{3}} \implies x = 20 \text{ m}$$

$$\frac{1}{2}$$

$$\therefore$$
 AB = 21.7 m

# $\frac{1}{2}$

#### **SECTION B**

Let A(2, -2), B(-2, 1) and (5, 2) be given points

$$\therefore AB^2 = (4)^2 + (-3)^2 = 25, BC^2 = (-2 - 5)^2 + (1 - 2)^2 = 50, CA^2 = 9 + 16 = 25$$

$$\therefore BC^2 = AB^2 + CA^2$$

ABC is a right triangle

and BC is the hypotenuse

$$\frac{1}{2}$$

$$\therefore \text{ ar}(\Delta ABC) = \frac{AB \times AC}{2} = \frac{25}{2} \text{ sq. units}$$

$$\frac{1}{2}$$

1

1

6. 
$$\frac{S_m}{S_n} = \frac{m^2}{n^2} = \frac{\frac{m}{2}}{\frac{n}{2}} \frac{(2a + (m-1)d)}{(2a + (n-1)d)} \implies d = 2a$$

$$\frac{1}{2}$$

$$\frac{a_m}{a_n} = \frac{a + (m-1)d}{a + (n-1)d} = \frac{a + 2(m-1)a}{a + 2(n-1)a} = \frac{2m-1}{2n-1}$$

$$\frac{1}{2}$$

30/2/2



**(8)** 

7. Let PT = x = PS, 
$$\angle$$
SPT = 120°  $\Rightarrow \angle$ TPO = 60° (::  $\triangle$ OSP  $\cong \triangle$ OTP)

$$\therefore \frac{OP}{x} = \sec 60^{\circ} = 2 \implies OP = 2x \text{ or } OP = 2PS$$

8. Q(-3, k) Let Q divide AB in the ratio of p: 1
$$A(-5, -4) \quad p: 1 \quad B(-2, 3)$$

$$-3 = \frac{-2p-5}{p+1} \implies p = 2$$
  $\frac{1}{2}$ 

$$\therefore \text{ Ratio is 2: 1} \qquad \qquad \frac{1}{2}$$

$$k = \frac{2 \times 3 - 4}{2 + 1} = \frac{2}{3}$$

9. 
$$OA = 6 \text{ cm}, OB = 4 \text{ cm}, AP = 8 \text{ cm}$$

$$OP^2 = OA^2 + AP^2 = 36 + 64 = 100 \Rightarrow OP = 10 \text{ cm}$$

$$BP^2 = OP^2 - OB^2 = 100 - 16 = 84$$

$$\Rightarrow BP = 2\sqrt{21} cm$$

**10.** 
$$\sqrt{3} x^2 - 3\sqrt{2}x + \sqrt{2}x - 2\sqrt{3} = 0$$

$$\sqrt{3}x\left[x-\sqrt{6}\right] + \sqrt{2}\left[x-\sqrt{6}\right] = 0 \text{ or } \left(x-\sqrt{6}\right)\left(\sqrt{3}x+\sqrt{2}\right) = 0$$

$$\Rightarrow x = \sqrt{6}, -\sqrt{\frac{2}{3}}$$

#### **SECTION C**

**11.** 
$$S = \{HHH, HHT, HTH, HTT, TTT, TTH, THT, THH\}, n(S) = 8$$

Same result on all the tosses 
$$A = (HHH, TTT)$$
,  $n(A) = 2$ 

P(Ramesh will lose the game) = 
$$\frac{8-2}{8} = \frac{6}{8}$$
 or  $\frac{3}{4}$ 

12. 
$$\operatorname{ar}(\Delta OAB) = \frac{\sqrt{3}}{4}(12)^2 = 36\sqrt{3} = 36 \times 1.73 = 62.28 \text{ cm}^2$$

ar(cricle with centre O) = 
$$3.14(6)^2 = 113.04 \text{ cm}^2$$

ar (sector OLQP) = 
$$3.14(6)^2 \times \frac{60}{360} = 18.84 \text{ cm}^2$$
  $\frac{1}{2}$ 

30/2/2 (9)



area(shaded region) = 
$$(62.28 + 113.04 - 2 \times 18.84) \text{ cm}^2$$
  
=  $137.64 \text{ cm}^2$ 

13. Radius of hemispherical tank = 150 cm

Volume of water in the hemispherical tank =  $\frac{2}{3} \times \frac{22}{7} \times 150 \times 150 \times 150$  cm<sup>3</sup>

Volume of water to be emptied = 
$$\frac{1}{\cancel{2}} \times \frac{\cancel{2}}{\cancel{3}} \times \frac{22}{7} \times \frac{15\cancel{0} \times 15\cancel{0} \times 15\cancel{0}}{\cancel{1000}}$$
 litres

Time taken to empty the tank = 
$$\frac{\cancel{22}}{\cancel{7}} \times \frac{\cancel{5} \times \cancel{\cancel{5}} \times \cancel{\cancel{5}} \times \cancel{\cancel{5}} \times \cancel{\cancel{5}}}{\cancel{\cancel{5}} \times \cancel{\cancel{5}} \times \cancel{\cancel{5}}} \min$$

$$= 16\frac{1}{2}\min$$

14. Volume of milk in the container = 
$$\frac{1}{3}\pi h (r_1^2 + r_2^2 + r_1 r_2)$$

$$= \frac{1}{\cancel{3}} \times \frac{22}{\cancel{7}} \times \cancel{2}1[400 + 64 + 160] \text{ cm}^{3}$$

$$= \frac{22 \times 624}{1000} \text{ litres}$$

$$\therefore \quad \text{cost of milk} = \frac{\cancel{22} \times 624}{\cancel{1000} \ 100} \times \cancel{35}^7 = 480.48$$

$$= \cancel{1} \times 480.48$$

15. Area of minor segment APBQ = 
$$\frac{\pi r^2.90}{360} - r^2 \sin 45^{\circ} \cos 45^{\circ}$$

$$= \left(\frac{3.14 \times 10^2}{4} - 100 \times \frac{1}{2}\right) \text{cm}^2$$
$$= (78.5 - 50) \text{ cm}^2 = 28.5 \text{ cm}^2$$

$$\therefore$$
 Area of major segment =  $\pi r^2$  – ar(minor segment)

$$= (314 - 28.5) \text{ cm}^2 = 285.5 \text{ cm}^2$$

(10) 30/2/2



1

1 + 1

 $1 + \frac{1}{2}$ 

16. Volume of ice-cream in the cylinder = 
$$(\pi(6)^2 \times 15)$$
 cm<sup>3</sup>

Volume of ice-cream in one ice-cream cone =  $\frac{1}{3}\pi r^2 (4r) + \frac{2}{3}\pi r^3$ =  $2\pi r^3$ 

∴ Volume of ice-cream in 10 such cones = 
$$20\pi r^3$$
  $\frac{1}{2}$ 

$$\begin{array}{c}
20 \,\pi r^3 = \pi \times 36 \times 15 \\
\therefore \quad r^3 = \frac{36 \times 15}{20} = 27 \Rightarrow r = 3 \,\text{cm}
\end{array}$$

:. Diameter of conical ice-cream cup = 6 cm

17. 
$$C(-1, 2)$$
 Figure  $\frac{1}{2}$ 

$$\frac{3x+8}{7} = -1 \Rightarrow x-5$$

$$\frac{3y+20}{7} = 2 \Rightarrow y = -2$$

$$x^2 + y^2 = 29$$
  $\frac{1}{2}$ 

18. 
$$\uparrow$$
 Figure  $\frac{1}{2}$ 

(i) 
$$\frac{x}{y} = \tan 45^\circ = 1 \Rightarrow x = y$$

(ii) 
$$\frac{x+7}{x} = \tan 60^\circ = \sqrt{3} \Rightarrow 7 = (\sqrt{3}-1)x$$
  
 $x = \frac{7(\sqrt{3}+1)}{2} = \frac{7(2.73)}{2}$   
= 9.6 m

19. 
$$a = a' + (p - 1)d$$
,  $b = a' + (q - 1)d$ ,  $c = a' + (r - 1)d$ 

$$a(q-r) = [a' + (p-1)d] [q-r], b(r-p) = [a' + (q-1)d] [r-p] \text{ and } c (p-q) = [a' + (r-1)d] [p-q]$$

$$\frac{1}{2}$$

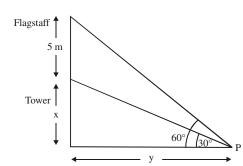
30/2/2 (11)



$$\therefore a(q-r) + b(r-p) + c (p-q) = a'[q-r+r-p+p-q] + d [p(q-r)-q+r+(q-1) (r-p) (r-1) (p-q)] - \frac{1}{2}$$

$$= a' \times 0 + d \left[ p \not q - p'r + \not q r - p \not q + p'r - \not q r + (\not - q + \not r - \not r + p' - p' + \not q) \right] = 0$$

**20.** 
$$(x-2)(2x-3+2x) = 2x^2 - 3x$$


or 
$$(x-2)(4x-3) = 2x^2 - 3x$$

$$4x^2 - 11x + 6 = 2x^2 - 3x \text{ or } 2x^2 - 8x + 6 = 0 \text{ or } x^2 - 4x + 3 = 0$$

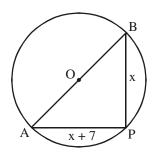
$$(x-1)(x-3) = 0 x = 1, 3$$
 \frac{1}{2}

#### **SECTION D**

21.



Figure


(i) 
$$\frac{x}{y} = \tan 30^\circ = \frac{1}{\sqrt{3}} \Rightarrow y = \sqrt{3}x$$

(ii) 
$$\frac{x+5}{y} = \tan 60^{\circ} = \sqrt{3} \text{ or } \frac{x+5}{\sqrt{3} x} = \sqrt{3}$$
  
 $\Rightarrow x = 2.5$ 

Height of Tower = 2.5 m

Distance of P from tower = 
$$(2.5 \times 1.732)$$
 or 4.33 m  $\frac{1}{2}$ 

22.



Figure

Let P be the location of the pole such that its distance from gate B is x metres  $\frac{1}{2}$ 

$$\therefore$$
 AP = x + 7

AB is a diameter 
$$\Rightarrow \angle APB = 90^{\circ}$$
 and AB = 17m

$$x^2 + (x + 7)^2 = 17^2$$

$$x^{2} + x^{2} + 14x - 240 = 0 \text{ or } x^{2} + 7x - 120 = 0$$
  $1\frac{1}{2}$ 

$$x = \frac{-7 \pm \sqrt{49 + 480}}{2} = 8, -15$$

$$\therefore x = 8m, x + 7 = 15 m$$

(12) 30/2/2

1

 $\frac{1}{2}$ 

 $\frac{1}{2}$ 

Let PL = y, OP is  $\perp$  bisector of  $AB \Rightarrow AL = BL = 8cm$ 23.

$$OL^2 = OA^2 - AL^2 = 10^2 - 8^2 = 36 \Rightarrow OL = 6 \text{ cm}$$

1

In 
$$\triangle OAP$$
,  $AP^2 = (y+6)^2 - 10^2$  ....(i)   
In  $\triangle ALP$ ,  $AP^2 = y^2 + 64$  ....(ii)

2

From (i) and (iii) 
$$y = \frac{32}{3}$$

$$\therefore$$
 AP =  $\frac{40}{3}$  cm

 $\frac{1}{2}$ 

24. For a/b > 1, when a = 1, b can not take any value, a = 2, b can take 1 value, a = 3,

b can take 2 values, a = 4, b can take 3 values

 $2\frac{1}{2}$ 

when a = 5, b can take 4 values, a = 6, b can take 5 values

Total Possible outcomes 
$$= 36$$

$$\therefore P(a/b > 1) = \frac{1+2+3+4+5}{36} = \frac{15}{36} \text{ or } \frac{5}{12}$$

1

2

**25.** Area of Shaded region = 
$$\frac{1}{2} \times \frac{22}{7} \left[ 7^2 + \left(\frac{7}{2}\right)^2 - 2\left(\frac{7}{4}\right)^2 \right] \text{cm}^2$$

$$= \frac{1}{2} \times \frac{22}{7} \left[ 49 + \frac{49}{4} - \frac{49}{8} \right] = \frac{1}{\cancel{2}} \times \frac{\cancel{22}}{\cancel{7}} \times \cancel{49} \left[ \frac{9}{8} \right]$$

$$=\frac{693}{8}$$
 sq. cm or 86.625 cm<sup>2</sup>

26.



**Figure** 

1

$$\frac{\mathbf{r_1}}{\mathbf{r}} = \frac{\mathbf{h}}{30} \Rightarrow \mathbf{h} = \frac{30 \times \mathbf{r_1}}{\mathbf{r}}$$

1

$$\frac{\frac{1}{\cancel{3}} \cancel{\pi} r_1^2 \times h}{\frac{1}{\cancel{3}} \cancel{\pi} r^2 \times 30} = \frac{1}{27} \text{ or } \frac{r_1^2 \times \cancel{30} \times r_1}{r^3 \times \cancel{30}} = \frac{1}{27}$$

$$\therefore \frac{\mathbf{r_1}}{\mathbf{r}} = \frac{1}{3} \Rightarrow \mathbf{h} = 10 \text{ cm}$$

1

**27.** Here a = ₹ 450, d = ₹ 20, n = 12

:. Reshma will be able to send her daughter to school

Efforts for Girl child education 1

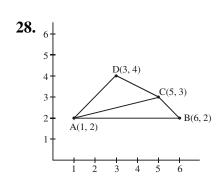



Figure 
$$\frac{1}{2}$$

$$ar(\Delta ABC) = \frac{1}{2}|1(2-3) + 6(3-2) + 5(2-2)| = \frac{5}{2} \text{ sq. units}$$
  $1\frac{1}{2}$ 

$$ar(\Delta ACD) = \frac{1}{2}|1(3-4) + 5(4-2) + 3(2-3)| = 3 \text{ sq. units}$$
  $1\frac{1}{2}$ 

$$\therefore \quad \text{ar(Quad ABCD)} = \frac{11}{2} \text{ sq. units}$$

**29.** For equal roots of  $x^2 + 2px + mn = 0$ ,  $4p^2 - 4mn = 0$ 

$$\Rightarrow p^2 = mn \qquad \dots(i)$$

For equal roots of  $x^2 - 2 (m + n) x + (m^2 + n^2 + 2p^2) = 0$ 

$$4(m + n)^{2} - 4(m^{2} + n^{2} + 2p^{2}) = 0$$

$$m^2 + m^2 + 2mn - m^2 - m^2 - 2(mn) = 0$$
 ...(From (i))

.. If roots of  $x^2 + 2px + mn = 0$  are equal then those of  $x^2 - 2a (m + n)x + (m^2 + n^2 + 2p^2) = 0$  are also equal

**30.** Correct construction 4

**31.** Correctly stated given, to prove, const. and correct figure

Correct Proof 2





(14)